The writer is very fast, professional and responded to the review request fast also. Thank you.
This project will expose you to inference using Bayesian networks. Bayesian networks capture causal relationships and are widely used in fault diagnosis across a wide variety of applications. A Bayesian network can be represented by a directed graph which will model causal relationships between variables. A useful tool to represent and traverse a graph is NetworkX (NetworkX — NetworkX documentation) which contains a comprehensive library of graph types and graph algorithms written in Python. The application that we will be targeting is Car fault diagnosis which was introduced in class. The fundamental issue in such diagnosis applications is to discover the causes or underlying reasons for the fault to occur and to rank these reasons in terms of their importance.
In this application we will be exploring the reasons behind: a) the car not starting and the probability that this event takes place; and b) under what conditions the car battery becomes flat and the likelihood of this occurring.
R1
Use Networkx in Google Colab and represent the network as shown below:
Attach probability tables to each node as specified in the Project 3 discussion document. Visualize the network using Networkx and show the nodes and edges. You do not have to show the probability tables you created but this of course will be embedded in your code. The coloring used in the figure above does not need to be reproduced. Instead, use a neutral color of blue to shade the nodes. Make sure that your edges show directionality.
R2
Compute the probability P (-cs, +ab, +fb)
R3
Compute the probability P (-cs, +ab)
R4
Compute the probability P(-cs, +fb)
R5
For the battery going flat, which of the factors is more important, battery dead or not charging?
Note:
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more